Comprehensive Research on Privacy Preserving Emphasizing on Distributed Clustering
نویسنده
چکیده
Often, the information is sensitive or private in nature and these sensitive data when mined violates the privacy of the individuals. Privacy preserving data mining (PPDM) mines the data but intends to preserve the privacy of susceptible data without ever actually seeing it. This paper recaps the important techniques in PPDM like anonymization, perturbation and cryptography. Nowadays, data mining is extensively used when the data is distributed among multiple parties. This paper highlights the research carried out in privacy preserving distributed clustering. Clustering is an effective method to discover data distribution and patterns in datasets. Significant research in privacy preserving distributed clustering is shaped on k-means clustering algorithm with secure multiparty computation (SMC). This work focuses on the previous development, existing challenges, and upcoming trends in privacy preserving kmeans clustering with horizontally and vertically distributed data.
منابع مشابه
A High Performance Privacy Preserving Clustering Approach in Distributed Networks
Privacy preserving over data mining in distributed networks is still an important research issue in the field of Knowledge and data engineering or community based clustering approaches, privacy is an important factor while datasets or data integrates from different data holders or players for mining. Secure mining of data is required in open network. In this paper we are proposing an efficient ...
متن کاملPrivacy Preserving Distributed K-Means Clustering in Malicious Model Using Zero Knowledge Proof
Preserving Privacy is crucial in distributed environments wherein data mining becomes a collaborative task among participants. Critical applications in distributed environment demand higher level of privacy with lesser overheads. Solutions proposed on the lines of cryptography provide higher level of privacy but poor scalability due to higher overheads. Further, existing cryptography based solu...
متن کاملCommunication-Efficient Privacy-Preserving Clustering
The ability to store vast quantities of data and the emergence of high speed networking have led to intense interest in distributed data mining. However, privacy concerns, as well as regulations, often prevent the sharing of data between multiple parties. Privacy-preserving distributed data mining allows the cooperative computation of data mining algorithms without requiring the participating o...
متن کاملPrivacy-Preserving Clustering Using Representatives over Arbitrarily Partitioned Data∗
The challenge in privacy-preserving data mining is avoiding the invasion of personal data privacy. Secure computation provides a solution to this problem. With the development of this technique, fully homomorphic encryption has been realized after decades of research; this encryption enables the computing and obtaining results via encrypted data without accessing any plaintext or private key in...
متن کاملRevisiting "Privacy Preserving Clustering by Data Transformation"
Preserving the privacy of individuals when data are shared for clustering is a complex problem. The challenge is how to protect the underlying data values subjected to clustering without jeopardizing the similarity between objects under analysis. In this short paper, we revisit a family of geometric data transformation methods (GDTMs) that distort numerical attributes by translations, scalings,...
متن کامل